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Plants display an extraordinary ability to regenerate complete

shoot systems from a tissue fragment or even from a single cell.

Upregulation of the determinants of pluripotency during a

precise window of time in response to external inductive cues is

a key decisive factor for shoot regeneration. A burst of recent

studies has begun to provide an understanding of signaling

molecules that are instrumental in the making of the

regenerative mass, as well as the developmental regulators

that are seminal in shaping the pluripotent state. Here, we

discuss how signaling molecules, waves of mutually exclusive

stem cell regulators and epigenetic modifiers could contribute

to cellular heterogeneity in an island of regenerative mass, thus

leading to de novo shoot regeneration.
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Introduction
A zygote exemplifies a single cell capable of giving rise to

a complete organism. However, plants are among the rare

organisms known to possess the extraordinary capacity of

awakening the totipotency that lies dormant in a few

selected cells of the adult body [1�,2,3]. The current scale

of plant regeneration studies, and commercial applica-

tions resulting from them, arises from our understanding

of the crucial role played by two key plant hormones,

auxin and cytokinin, in modulating de novo plant regen-

eration [4]. De novo organogenesis [5,6] and somatic

embryogenesis [7] are strictly hormone-induced and hor-

mone-controlled processes that are almost impossible
www.sciencedirect.com 
without these external cues. External inductive cues of

this nature, which are sufficient for cellular reprogramming

to give rise to complete organism from a tissue fragment,

are limited to the plant kingdom (Figure 1) [3,8]. Over the

years, several studies of the loss of function of key plant

specific transcription factors and the consequences of their

forced expression during de novo shoot regeneration have

permitted the unearthing of the underlying molecular

mechanisms [1�,9,10��,11,12�,13,14]. In this review, we

highlight how recent studies into de novo shoot regeneration

have begun to reveal the fundamental cellular and mole-

cular events in real time, and how this has generated

renewed interest in novel areas of reprogramming [15],

where a number of key questions yet remain unsolved.

Modes of regeneration
Until now, the most investigated and best understood

mode of shoot regeneration is callus mediated regenera-

tion using a two step protocol or a modified version of

this protocol [5]. Indirect de novo shoot regeneration

involves two phases of incubation: first callus induction

on an auxin rich medium, followed by shoot organogene-

sis on a cytokinin rich medium [10��,16–19]. The regen-

erative potential of explants used for callus induction

largely depends on their developmental stages [18,20]

and origins [5,21]. In contrast, direct shoot organogenesis

involves the incubation of suitable explants on cytokinin

containing media, with or without prior auxin priming

[10��,16,22,23��,24]. Conversion of lateral root primordia

(LRP) to shoots is an example of direct regeneration. The

central role of each hormone, in moulding the plasticity of

plant cells, is demonstrated by the critical importance of

either auxin or cytokinin during the different phases

of incubation during both modes of regeneration.

Acquisition of competence to regenerate
shoot in response to relative abundance of
plant hormones
The auxin to cytokinin ratio in the culture medium is key

to the development of a pluripotent callus [16,25��].
Several lines of evidence demonstrate an irreplaceable

role for high auxin concentration in LRP initiation [26] as

well as in pluripotent callus formation [27]. The organo-

genetic potential and the molecular characteristics of a

callus induced on a cytokinin rich callus induction

medium (CIM) is markedly different from a callus

induced on auxin rich CIM. High concentrations of

cytokinin induces phloem pericycle cell divisions in
Current Opinion in Plant Biology 2018, 41:23–31
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Arabidopsis explants undergoing cellular reprogramming to regenerate complete shoot systems. (a) Explants used for de novo shoot regeneration:

(i) root, (ii) hypocotyl, (iii) cotyledon, and (iv) leaf. (b) Pluripotent callus formation from explant on callus induction medium (CIM). (c) Regeneration

of complete shoot system from callus on shoot induction medium (SIM). Scale bars in (a.ii and a.iii) represent 0.5 mm and 1 mm in the rest of the images.

Image (c) is reprinted from Kareem et al. [10��] with permission from Cell Press. License number: 4158680029029.
contrast to the xylem pole pericycle divisions induced on

auxin rich media [16]. Key root trait determinants, essen-

tial for the establishment of pluripotency (see the section

below), are dramatically downregulated in cytokinin rich

CIM and such callus fails to regenerate shoots [16,25��].
These studies suggest the sole use of cytokinin in CIM is

not sufficient to drive the downstream molecular changes

and cell divisions required to establish the pluripotency

and thus the ability to regenerate shoots. During direct

regeneration, auxin rich LRP are competent to make

shoots when exposed to high cytokinins [10��,16,23��,24],
further supporting the role of high auxin in establishing

the pluripotency necessary to regenerate shoots.
Current Opinion in Plant Biology 2018, 41:23–31 
A root developmental pathway is important for
callus formation
Initial incubation on CIM prompts the pool of reprogram-

mable adult stem cells constituted by xylem-pole pericy-

cle cells in roots, and pericycle-like cells in aerial

explants, to undergo rapid division in response to exoge-

nously applied auxin [25��,28,29]. These cell divisions

and ensuing molecular changes during CIM pre-incuba-

tion play a critical role in the acquisition of competence

for shoot induction [10��,16,17,19,25��,29]. As these cells

proliferate, the expression of J0121 [30], a marker for

differentiated pericycle cells, becomes diffuse and dis-

appears from the callus [17,25��,29]. The disappearance
www.sciencedirect.com
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of J012 expression has been correlated with the higher

potential to form callus, as in the case of the callus
formation related 1(cfr1) mutant [31�]. J0121 has an inter-

mediate expression level in wild type callus and persists

in solitary-root (slr/iaa14) mutants [32] which are defective

in callus formation [31�]. Loss of J0121 is not a mark of

dedifferentiation during callus formation, but rather

appears to mark the acquisition of a root identity by

callus cells [17,25��,31�]. The root identity of the callus

is supported by similarities between the morphology,

cellular organization and gene expression profiles of roots

and callus. Many root tissue markers such as WUSCHEL-
related homeobox 5 (WOX5), SHORT-ROOT (SHR),
SCARECROW (SCR), PLETHORA 1 (PLT1), PLT2, PIN-
FORMED1 (PIN1), the quiescent center marker, QC25,
ROOT-CLAVATA HOMOLOG 1 (RCH1) and GLABRA2
(GL2) are expressed in callus irrespective of the origin of

the explants [10��,16,25��]. The significance of the sys-

tematic triggering of a root development pathway during

callus formation has been further emphasised by genetic

studies which demonstrate reduction or elimination of

callus formation in the aberrant lateral root formation 4
(alf4) mutant [25��], which is defective in lateral root

initiation [33]. Interestingly, signaling molecules such as

very long chain fatty acids restrict the ALF4 mediated

callus forming activity of pericycle cells [31�]. The crucial

role played by LATERAL ORGAN BOUNDARIES
DOMAIN (LBD) transcription factors in lateral root devel-

opment as well as in callus induction also reinforces the

significance of the root development pathway in callus

formation [34–36]. Thus, morphological and molecular

similarities and genetic studies highlight the commonali-

ties between callus formation and lateral root initiation

suggesting that root-like traits are likely to influence the

regeneration potential of callus.

To be or not to be competent?
The significance of root traits in conferring regenerative

potential to the callus derived from all explants, irrespec-

tive of their origin, has recently been unraveled by

studying the molecular and cellular phenotypes of the

plt3, 5-2, 7 triple mutant in real time [10��]. PLT genes

encode plant specific double AP2 domain-containing

transcription factors [37]. plt3,5-2,7 mutant [38,39] callus

was shown to lose key root trait determinants and the

ability to regenerate any shoot progenitors [10��]. Root

stem cell regulators are transcriptionally regulated by

PLT3, PLT5 and PLT7 and play an essential role in

conferring pluripotency and thus competence to make

shoot progenitors. Subsequent over-expression of organ

boundary gene CUP-SHAPED COTYLEDON 2 (CUC2),
which is also regulated by the PLT genes, helps in the

successful outgrowth of the shoot from the regenerative

foci. This study thus reveals a two step mechanism which

appears to be valid for all explant tissues [10��]. The

competence to regenerate and the timely divergence

from the initial lateral root development pathway are also
www.sciencedirect.com 
essential criteria for direct conversion of LRP to shoots.

During direct shoot regeneration, LRP at neither very

early stages nor very late stages are capable of conversion

[22,23��]. The intermediate stage, competent, LRP con-

tain a group of cells in the transient root stem cell niche

that expresses WOX5, rapidly followed by the expression

of shoot specific genes like WUSCHEL (WUS), CLAVATA
3 (CLV3) and SHOOT MERISTEMLESS (STM) when

these LRP are incubated on cytokinin media [23��].
The initial expression of root stem cell regulators in

LRP, together with their genetic necessity for conversion

of LRP to shoot demonstrate that transient root traits are

essential in pluripotent founder cells for cellular repro-

gramming towards shoot fate [10��,23��].

Wounding, inevitable signaling in priming the
regeneration
Wounding is an inevitable process during regeneration as

the formation of protuberances on CIM as well as the

outgrowth of competent LRPs is characterized by forceful

protrusion of these developing structures through non-

converted cells. The consequent loss of contact between

the adjacent differentiated cells is likely to trigger the

wound signaling pathway. Interestingly, over-expression

of the wound induced transcription factor, WOUND
INDUCED DEDIFFERENTIATION 1 (WIND1) followed

by prolonged incubation on cytokinin rich medium can

bypass the need for external application of artificial auxin

on explants [12�]. Recent findings piece the puzzle

together by providing insights into how wounding-

induced signaling can promote de novo shoot regenera-

tion. The WIND1 transcription factor directly activates

ENHANCER OF SHOOT REGENERATION 1 (ESR1) to

promote CUP SHAPED COTYLEDON 1 (CUC1)-medi-

ated shoot regeneration [40�]. However the question of

what establishes the pluripotency in wound induced

callus remains. Are wound induced signals or transient

WIND1 overexpression during callus formation sufficient

to establish pluripotency and thus competence to regen-

erate, in addition to ESR1-mediated shoot promoting

activity? It is important to note that key root cell fate

determinants do not display appreciable up-regulation in

WIND1 overexpressing callus as compared to callus-

induced by wounding together with external auxin appli-

cations [12�]. This raises the question of whether other

wound induced signals can substitute for the necessity for

root cell fate determinants in conferring the pluripotent

state to callus? This does not appear to be the case, as

external inductive cues involving wounding in addition to

auxin, fails to trigger any sign of shoot regeneration in

mutants defective in lateral root cell fate determinants

[10��]. Callus harbouring an artificial repressive form of

WIND1 express nearly normal levels of root cell fate

determinants and does regenerate shoots, though only

occasionally [40�]. Proof of the absolute necessity for

WIND1 to establish pluripotency requires clean genetics

involving the cumulative loss of function of WIND1 and
Current Opinion in Plant Biology 2018, 41:23–31
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related redundant genes. Although both these and other

studies are needed to gain deeper insights, the possibility

that wound induced signals act together with root cell fate

determinants to establish the pluripotent state, and the

indispensible role of root stem cell regulators in shoot

regeneration, remain central elements in our current view

of this enigmatic process.

Waves of expression of distinct sets of stem
cell regulators are key to progressive shoot
regeneration
Regeneration is a constant tug-of-war between the root

and shoot identities in response to external inductive

cues. Depending on the root vs. shoot inductive cues,

the preponderance of either root or shoot factors will drive

the process along specific developmental pathways. The

final phase of indirect de novo regeneration is the transfer

of competent calli to Shoot Inducing Medium (SIM).

This triggers rapid changes in morphological features

and molecular markers [19]. Calli incubated on SIM show

faster and unorganised proliferation outside of the central

region of the root explants [16]. Another observable

feature which may be easily mistaken for a sign of shoot

regeneration is the greening of the calli, which has been

attributed to the maturation of chlorophyll promoted by

cytokinin [41,42�]. The epidermal hairs which are promi-

nent on CIM and at early stages of SIM incubation

become less pronounced on prolonged SIM incubation.

The possibility of reversal (root $ shoot) of cell fate at

the shoot regenerating foci has not been addressed during

the process of callus mediated (two step) regeneration

process. However, the answer to the question of revers-

ibility can be partially deduced by following the dynamics

of cellular events, transient phases of the resetting of the

cellular identity and expression patterns of key factors

capable of switching cell fate in real time. It is well

established that root stem cell regulators such as PLT1,
PLT2 (Figure 3a,e), SCR and root specific markers like

QC25, and RCH1 are rapidly down-regulated during incu-

bation on SIM (Figure 2a) [10��,16,19]. At this juncture,

the expression of shoot specific genes is neither strongly

upregulated nor confined to specific domains

[9,10��,16,19]. Thus, there appears to exist a narrow

intermediate void phase during which a defined root or

shoot identity cannot be assigned, and the callus exists in

a kind of ‘no man’s land’. The shoot stem cell regulators,

WUS and STM display an upregulated expression in a

confined domain only after a few days in response to high

levels of cytokinin. By this time the expression of root

stem cell regulators has diminished [10��,16,19]. This lag

between the peaks of the expression of two distinct sets of

mutually exclusive stem cell regulators may not allow

multiple rounds of reversible fate switching unlike the

situation observed during direct regeneration. Such a lag

between the downregulation of root stem cell regulators

and upregulation of shoot stem cell regulators is not

observed during direct regeneration [22,23��]. The
Current Opinion in Plant Biology 2018, 41:23–31 
converting LRP passes through a transient phase where

it apparently possesses a dual fate (both root as well as

shoot stem cell regulators are expressed) (Figure 2b)

[22,23��]. During the direct conversion of LRP to shoots,

cell fate can be reversibly switched multiple times during

a narrow window of time. During this brief period, the cell

fate of the LRP, where there is an upregulation of shoot

stem cell regulators due to cytokinin treatment, can be

reverted to form a root meristem by subsequent auxin

treatment [23��]. Lateral root primordia cells expressing

both root and shoot stem cell regulators thus appears to

act as bipotent stem cells that can give rise to either root or

shoot fate.

Uncoupling the intermediate developmental
phases during regeneration
A central question that remains largely unanswered across

the plant kingdom is whether regeneration proceeds

through intermediate developmental phases and whether

these phases can be uncoupled? While indications of

potential intermediate phases were realized during mor-

phological studies of regenerating callus across Arabidop-

sis accessions [42�], a major challenge was to uncover the

cellular and molecular mechanisms that could uncouple

these intermediate phases of shoot regeneration. A key

step in understanding the mechanisms of regeneration

was the discovery of distinct PLT regulated modules that

uncoupled the acquisition of competence to regenerate

shoot progenitors from the completion of shoot regenera-

tion [10��]. The study involved the step by step reintro-

duction of root stem cell regulators and shoot promoting

factors in a mutant blocked at an intermediate phase of

shoot regeneration. This resulted in a sequential unblock-

ing of the intermediate phases, thereby identifying key

regulatory modules required to accomplish shoot regen-

eration [10��].

Cellular heterogeneity during shoot
regeneration
The de novo assembly of a shoot in an island of callus

appears to follow the basic principles of self-organisation.

The tightly controlled spatio-temporal order of regulatory

events plays a determining role in the absence of any

embryonic or postembryonic positional cues. Despite the

fact that callus cells are thought to be pluripotent, not all

the cells are capable of initiating the regenerating foci and

thus there exists cellular heterogeneity within the callus.

In fact, heterogeneity in the gene expression levels, and

non-overlapping expression domains of the key shoot and

root determinants highlights the considerable differences

amongst the cells of regenerating calli (Figure 3)

[10��,16,19]. The level of heterogeneity increases over

time in culture. Even though a number of shoot regen-

erating foci can be initiated and produce PIN1 marked

shoot progenitors, not all of these progenitors can accom-

plish the regeneration of a complete shoot system. The

fate of the regenerating foci and their conversion are
www.sciencedirect.com
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Schematic illustration representing waves of expression of root and shoot stem cell regulators during de novo shoot regeneration. (a) During callus

formation (on CIM), high expression levels of root stem cell regulators is shown by the blue peak. It defines the phase of acquisition of

regeneration competence. Following transfer to SIM, root stem cell regulators are down-regulated and key shoot stem cell regulators are not yet

upregulated and confined to their respective domains (represented by the dotted blue line and absence of red line). Later during shoot

regeneration (on SIM), the up-regulation of shoot stem cell regulators (red peak) marks the initiation of de novo shoot formation. (b) During direct

shoot regeneration on cytokinin rich media the level of root stem cell regulators drops gradually as shown by the blue line. However, shoot stem

cell regulators shown by red line appear before the root stem cell regulators have been lost, thereby imparting a mixed cell fate identity to the

converting LRP [10��,16,19,22,23��].

www.sciencedirect.com Current Opinion in Plant Biology 2018, 41:23–31
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Figure 3
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Cellular heterogeneity in regenerating callus. Expression of root and shoot specific regulators is restricted to only few foci in the mass of callus. (a)

Expression of PLT2<PLT2-YFP in callus on CIM. (b–d) Overviews showing the expression of PIN1<PIN1-GFP (b) pWUS<erCFP (c) and

pSTM<H2B-vYFP (d) in regenerating shoot foci on SIM. (e) Down-regulation of PLT2<PLT2-YFP in callus upon shoot inductive stimuli. (f)

PIN1<PIN1-GFP expression in a regenerated shoot meristem with organ primordia. (g) Confined expression of pWUS<erCFP (arrow) to the center

of a shoot promeristem. (h) Regenerating shoot meristem displaying pSTM<H2B-vYFP expression. Red colour in (a) propidium iodide, (b and f)

chlorophyll autofluorescence and (c, d, e, g, and h) FM4-64 stain. Scale bar represents 50 mm except in (g) where it represents 30 mm. White

arrowheads in (b, c, and d) indicate the regenerative foci in the heterogeneous callus. Red arrowheads in (f) indicate the organ primordia. White

arrow in (g) indicates WUS confinement in a shoot promeristem.

Image (c) is reprinted from Kareem et al. [10�� with permission from Cell Press. License number: 4158680029029).
apparently stochastic, and decisions are likely to be

influenced by irregular callus topology that could impose

growth driven mechanical tension [43], environmental

factors such as contact with the culture medium, and

endogenous inter-cellular variability at the level of gene

expression or genome status. One of the prime factors that

has been proposed to contribute to cellular and molecular

heterogeneity during regeneration is underlying epige-

netic variations resulting from hormone treatments and

multiple rounds of cell divisions [44]. Epigenetic regula-

tion of WUS [45,46], a key gene that has been shown to be

involved in establishing the stem cell niche during normal

[47,48] as well as de novo shoot development

[14,19,23��,45] provides one of the examples of a mecha-

nism by which cellular heterogeneity is generated.

Deregulated epigenetic modifications at the WUS locus

could change expression competence and generate cellu-

lar heterogeneity. The higher number of organizing cen-

ters in the (methyltransferase 1) met1, DNA hypomethy-

lated mutant, could be a result of ectopic relaxation of

repressive epigenetic control at the WUS locus [46]. In

addition to epigenetic modifiers, a multitude of other
Current Opinion in Plant Biology 2018, 41:23–31 
factors, and cross talk between factors, can also contribute

to the disparity in the regenerative potential between

callus cells [49].

Perspective
We have begun to understand the molecular mechanisms

underlying de novo plant regeneration. Over the years, the

availability of cutting edge techniques such as single cell

RNA sequencing [50��,51], time lapse imaging [22,52–

54], and cell lineage analysis [55] have helped in scruti-

nizing developmental processes in finer detail than ever

before. This has resulted in the discovery of new popula-

tions of adult stem cells [25��], the dynamics of cellular

events and the assembly of regulatory interactions in real

time [10��,19,23��]. Furthermore, the power of classical

genetics has permitted the elucidation of how the players

engaged in normal developmental pathways have been

hijacked to accomplish reprogramming [10��,50��]. For

example, the root regulatory network is required to estab-

lish the pluripotent state in callus and embryonic pattern-

ing gene such as CUC2 is needed to facilitate the com-

pletion of shoot regeneration [10��,25��]. More careful
www.sciencedirect.com
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studies are indispensable for allowing clarification of the

parallels between normal developmental pathways and

different phases of shoot regeneration, as exemplified in

the case of root regeneration, which has been shown to

follow an embryo-like developmental sequence to regen-

erate the root tip upon resection [50��]. Unraveling each

new detail enhances our understanding and appreciation

of the challenges that lie ahead in understanding the

complex process of regeneration. While several lines of

evidence demonstrate a key role for the transient induc-

tion of root stem cell regulators in de novo shoot formation,

both during indirect and direct [10��,23��] regeneration in

Arabidopsis, parallel studies must be carried out in other

plant species to determine if the necessity of root regula-

tory network in conferring pluripotency during shoot

regeneration is conserved [56].

While de novo shoot regeneration can be exploited to

answer a number of fundamental questions addressing

the cellular and molecular mechanisms of reprogramming

in the absence of embryonic positional cues, the discovery

of new regulators capable of conferring regenerative

potential to recalcitrant plant species or enhancing regen-

eration efficiency, can also drive innovation in green

culture industries. Future studies should exploit plant

regeneration as a model to study how plants have

deployed kingdom-specific mechanisms to deal with

intrinsic differences such as lack of cell migration, a

key cellular process, extensively utilized in animal

regeneration.
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